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ABSTRACT 

This paper presents a novel way of generating 

information extractors that obtain high-level information 

from recorded music such as the presence of a certain 

musical instrument. Our information extractor is 

comprised of a feature set and a discrimination or 

regression formula. We introduce a scheme to generate 

the entire information extractor given only a large 

amount of labeled dataset. For example, data could be 

waveform, and label could be the presence of musical 

instruments in them. We propose a very flexible 

description of features that allows various kinds of data 

other than waveform. Our proposal also includes a 

modified evolutionary learning method to optimize the 

feature set. We applied our scheme to automatically 

generate musical instrument detectors for mixed-down 

music in stereo. The experiment showed that our scheme 

could find a suitable set of features for the objective and 

could generate good detectors. 

1. INTRODUCTION 

Musical information extraction technology has been 

extensively studied for various kinds of applications. 

Generally speaking, it extracts some features from input 

data, and then applies discriminant or regression analysis 

to estimate an objective variable from the features. There 

are some popular feature sets like MFCC (Mel-frequency 

cepstrum coefficient) [1] and features defined in Mpeg-7 

standard [2], along with many other proposed features 

designed by heuristics. Popular discriminant analyses, 

which estimate objective variable from given feature set, 

include SVM, AdaBoost, GMM, HMM and so on. For 

example, Soo-Chang Pei et al. introduced 

instrumentation analysis and identification method with 

MFCC, Mpeg-7 features, and SVM [3]. T.Kitahara et al. 

introduced instrument identification method which can 

estimate the note-by-note presence probability of musical 

instruments by using linear discriminant analysis and 

some features other than MFCC or Mpeg-7 [4]. In these 

studies, feature sets are designed by human.  

Meanwhile, there are some studies on Feature 

Generation [5]. Typically, a feature is obtained with a 

feature extractor composed of some basic functions. 

Genetic programming (GP) is used to design a feature 

that gives optimum objective variable. However, only a 

single feature could be designed, rather than an effective 

set of features for multivariate analysis. As a result the 

generated extractor is not accurate enough compared to 

popular methods with discriminant and multi-

dimensional feature set designed by human. Also the 

description of feature is specialized to waveforms. As 

such, we could not apply this method to other kinds of 

data such as log-frequency spectrum. 

It would appear that we can realize more accurate 

information extractor if we could automatically generate 

a set of effective features specialized for the objective. 

The work presented here is an approach to automatically 

generate an information extractor from dataset. The 

resulting extractor includes a set of effective features to 

estimate the objective variable. It also supports various 

types of data as input. First, we introduce the structure of 

the information extractor that our proposal generates. 

Next, the modified evolutionary learning method to 

optimize the feature set is presented. And finally as an 

application of this approach, we introduce our 

experiment of designing musical instrument detectors. 

2. STRUCTURE OF INFORMATION 

EXTRACTOR 

Figure 1 shows the structure of information extractor. 

Figure 1. Structure of information extractor. X represents 

input data itself such as waveform. FEF represents a 

feature extraction function which extracts a single feature 
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from the input data. xj represents the feature extracted by 

FEFj, and x represents the feature vector consisting of xj. f 

represents discriminant or regression formula which 

estimates the objective variable y based on the feature 

vector x.  

First, the information extractor calculates multiple 

features from input data in accordance with the feature 

extraction functions (FEFs). The discriminant or 

regression formula estimates the objective variable from 

the extracted features. This structure itself is the same as 

the traditional information extractors. The difference is 

that our approach optimizes the entire information 

extractor, i.e. not only the discrimination or regression 

formula, but also the feature set. 

2.1 Structure of input data 

In our scheme, input data is expressed as a multi-

dimensional matrix. For example, we can express stereo 

waveform as a two-dimensional matrix with channel and 

time dimensions (Figure 2). In this example, each 

element in two-dimensional matrix contains amplitude of 

the waveform in the channel at the time. 

Figure 2. Example of input data of waveform.  

Also we can express an image in RGB representation 

as a three-dimensional matrix with color, X, and Y axes 

(Figure 3). In this example, each element in three-

dimensional matrix contains the brightness in RGB color 

space at the coordinate. 

Figure 3. Example of input data of RGB image. 

To express video data in this fashion, we would use 

four-dimensional matrix obtained just by adding one 

more dimension for time to the matrix for image.  With 

this matrix based representation, we can flexibly handle 

various kinds of data as input data. 

2.2 Description method for FEF 

To support wide variety of input data and features, we 

propose a very flexible description of FEF. In our 

approach, FEF is formed as a cascade of basic functions 

(BFs) like a short computer program to reduce the input 

data matrix to a scalar. We prepared 51 BFs listed in 

Table 1.  

 

 
Table1. List of basic functions. 

The list includes four arithmetic operations, exponent 

functions, trigonometric functions, normalization 

algorithms, statistical functions, digital filters, etc.  

Figure 4 shows an example of FEF. And Figure 5 shows 

the calculation of the example FEF. 

 
Figure 4. Example of FEF.  

 

 
Figure 5. Calculation of the example FEF. 
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frequency axis, applies lo-pass filter along time axis, and 

calculates standard deviation along time axis. With this 

formula, it extracts a single feature from input data of 

two-dimensional matrix. F and T before # represent 

frequency and time axes, and these are the axis 

parameters representing the axis along which the given 

matrix is processed. As Figure 4 shows, it executes 

several processes to the matrix of input data by following 

the FEF from left to right. The number of dimensions of 

the matrix was reduced in the course of processing, and 

eventually, a single value is extracted from input data. 

Some BFs have parameters. There are two kinds of 

parameter, one is axis parameter that represents which 

axis to process, and the other is the specific parameter for 

each BF such as the coefficient of lo-pass filter.  

2.3 Discriminant or regression formula 

We use linear discriminant or regression analysis with 

feature selection to estimate the objective variable from 

the feature set as below. 

y = f(x) = Σj bjxj + b0  (1) 

bj represents linear combination coefficients, and b0 

represents intercept coefficient. We use linear procedure 

here because we can easily calculate contribution ratio 

which we later use to optimize the information extractor 

as a whole. Also it would appear that we can obtain a 

measure of accuracy without non-linear procedure 

because FEF can express various non-linear conversions. 

3. MODIFIED EVOLUTIONARY LEARNING 

METHOD 

Information extractor is optimized over training dataset 

which is a list of input data with label information. Table 

2 shows an example of dataset. The label can be 0 or 1 

for two-class discriminant analysis, or a numeric value 

for regression analysis. 

Table 2. Example of dataset to generate a vocal presence 

detector which accepts a segment of waveform and 

estimates the presence of vocal in the waveform. 0 

signifies no vocal present in the waveform, and 1 signifies 

vocal present. 

As previously described, each FEF in the information 

extractor has immense flexibility, so we used 

evolutionary learning method to search for a good feature 

set from the infinite set of possibilities. One generation of 

our evolutionary learning method executes the following 

steps. 

1. Feature set generation 

2. Feature extraction 

3. Linear discriminant or regression analysis with feature 

selection 

4. Calculation of contribution ratio of each feature 

These steps are repeated until the learning is stopped 

by a user. 

3.1 Feature set generation 

In the first generation, the method synthesizes the feature 

set which is a list of fixed number of FEFs by combining 

BFs randomly. To generate the FEF, first, it chooses a 

BF randomly from the prepared BFs. If the chosen BF 

has parameters, they are set also randomly. Then this 

process is repeated to append more BFs until the matrix 

of input data is reduced to a single value by the FEF. 

In the second and later generations, the method 

generates a new feature set based on the feature set from 

the previous generation by evolutionary learning process. 

It uses the contribution ratio of each feature calculated in 

the fourth step of the previous generation as the 

evaluation of that feature. Figure 6 shows the schematic 

of feature set generation in the second and later 

generations. First, it selects features in the order of 

contribution ratio and adds them to the feature set of next 

generation unmodified until cumulative contribution ratio 

becomes 99%. Next, it generates some features by 

randomly selecting from highly contributing features and 

mutating them by inserting, deleting BFs or modifying 

parameters. Finally, it generates remaining features 

randomly as done in the first generation. Figure 7 shows 

an example of the mutation of FEF. 

 
Figure 6. Example of feature set generation. τ represents 

generation in evolutionary learning process. Feature set 

in next generation contains highly contributing features 

in the previous generation, features generated by 

mutating the highly contributing features in the previous 

generation, and those randomly generated. All features in 

the first generation are generated randomly. 
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Figure 7. Example of mutation of feature. A feature is 

mutated by inserting, deleting BFs or modifying 

parameters randomly. 

3.2 Feature extraction 

In this step, FEFj extracts feature x
(i)

j from input data 

with index i. At this point, we have dataset with its 

features. 

3.3 Linear discriminant or regression analysis with 

feature selection 

In this step, the method estimates parameters of 

discriminant or regression formula (b) in equation 1 with 

the dataset and the features calculated in step 2. Because 

some features are generated randomly, there are many 

meaningless or redundant ones in the generated feature 

set, particularly in the first generation. Feature selection 

is very important in keeping only the effective features to 

realize maximum generalization accuracy. It is also 

important for the calculation of fair contribution ratio of 

features from discriminant or regression formula. For the 

feature selection, we used local-search to search for a 

good combination of features from information criteria 

perspective. More precisely, first, it prepares parameter 

uj = {1, 0} which indicates whether the j-th feature is 

selected or not, and sets all bits to 0 at the beginning. 

Then, it tries inverting a single bit among uj’s one by one 

starting from the first one, estimates parameters b with 

the currently selected features by using least squares 

method, and calculates AIC [6] by comparing the 

estimated objective variable and the label in the dataset. 

AIC = n * log(PMSE) + 2 * (k+1)  (2) 

n represents the number of the input data in the dataset, 

PMSE represents the prediction mean square error, and k 

represents the number of the features selected in u. 

Among the possible m bit inversion positions, the one at 

which the AIC improved the most is selected and 

executed, and the local-search is continued. In case of no 

improvement, it finishes the local-search with the 

selected features and the computed b as the optimum 

with respect to AIC.  

3.4 Calculation of contribution ratio of each feature 

Contribution ratio of each feature is calculated by the 

following formula.  

vj = bj / StDev(xj) * StDev(t) * Correl(xj, t) (3) 

vj represents the contribution ratio of the feature with 

index j. t represents objective variable which is the label 

in the dataset. StDev(xj) represents the standard deviation 

of the feature with index j in the dataset. StDev(t) 

represents the standard deviation of the objective 

variable in dataset. And Correl(xj, t) represents the 

coefficient of correlation between xj and t. If xj is not 

selected in step 3, vj becomes zero. If there are multiple 

objectives, we can just use mean contribution ratio from 

each formula for each objective. With step 1, highly 

contributing features will survive and prosper, and poorly 

contributing features will die. With iteration of steps 1 

through 4, the feature set will improve with respect to the 

objective compared to the previous generation. While 

traditional GP methods can optimize only a single feature, 

our approach can optimize multiple features 

simultaneously to achieve better generalization accuracy. 

Moreover because we use contribution ratio to select 

features, we maintain the variety of features in the later 

generations, which alleviates the local optimum problem. 

4. APPLICATION TO MUSICAL INSTRUMENT 

DETECTION 

We used our scheme to automatically generate musical 

instrument detectors for mixed sound. 

4.1 Dataset 

We prepared about 100 commercially available music 

files which are sampled at 44.1 kHz in stereo. They cover 

variety of genres such as pops, rock, jazz, world, and so 

on, and various kinds of musical instruments appear in 

these music files. We labeled each 1-second interval 

according to the presence of 10 kinds of musical 

instruments which are vocal, harmonize, piano, clean 

guitar, distortion guitar, distortion guitar solo, strings, 

brass, bass and drums with true (1), false (0) or unclear 

(no label). If there is audible sound of the instrument in 

an interval, we labeled it 1, otherwise 0, and if we feel it 

is very difficult to determine the presence of the musical 

instrument from only 1-second of waveform even for 

human ear, we put no label. We decided that it was not 

necessary to label the whole music file because there are 

repetitions in music, so there are about 40% of unlabeled 

sections. Finally, we got 21,272 segments of 1-second 

waveform in total. Table 3 shows the number of correctly 

labeled segments for each musical instrument. 

Table 3. Number of segments of waveform with correct 

label information.  
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Segments contain 3.2/10 musical instruments on 

average and 7.5/10 musical instruments at maximum if 

we treat non-labeled instrument as 0.5. And we shuffled 

these segments without keeping reference to the songs 

from which they were taken. We used the half for 

training, and the other half for testing. 

4.2 Input data 

Our scheme can handle waveform directly. However, we 

found that we can achieve better accuracy by applying 

suitable pre-processing that emphasizes the 

characteristics of the input data for the objective. So, we 

converted the waveforms into three kinds of input data 

whose names are "12TonesM", "12TonesF" and 

"12TonesB". Each data is two-dimensional matrix with 

dimensions of time and musical pitch. The difference 

among these three data will be shown later. Original 

waveform is converted to these matrices with the 

following steps. 

4.2.1 Simplified sound source separation  

We applied simplified form of the sound source 

separation algorithm described in [7] to obtain 

foreground and background sounds from the original 

stereo sound. Figure 8 shows the signal flow diagram of 

this sound source separation. 

Figure 8. Signal flow diagram of the simplified sound 

source separation. FL, BL, FR and BR represent 

foreground-left, background-left, foreground-right and 

background-right, respectively. 

Each channel is analyzed with short-time Fourier 

transform with rectangle window of 16k samples and 

overlap of 8k samples. This very long frame size is 

needed to maintain the quality of separated sound. Then 

the phase difference between stereo channels in each 

frequency is calculated. If there is a difference greater 

than 0.2 PI, the frequency component is labeled as 

background. Otherwise, it is labeled as foreground. Then, 

for each channel, two waveforms for foreground and 

background are synthesized with inverse short-time 

Fourier transform with triangle window. This results in 

four channels of waveforms. Then, the left and right 

foreground channels are mixed, and the same is done for 

the background channels. As a result, two waveforms of 

foreground and background sounds are obtained. With 

this sound source separation, monaurally recorded 

sounds such as vocal, bass, snare and kick drums will 

appear in the foreground channel. On the other hand, 

sound recorded in stereo like strings or brass section will 

appear in the background channel. 

4.2.2 Wavelet transform 

We applied wavelet transformation to convert single 

waveform into two-dimensional matrix with time and 

musical pitch dimensions. We used band-pass filter 

which passes only a single semi-tone, as the mother 

wavelet. The original waveform was decomposed into 

108 sub-bands corresponding to 12 semi-tones over 9 

octaves. Then the logarithm of energy in each 7.8ms in 

each semi-tone is calculated. Figure 9 and Figure 10 

show the schematic diagram and an example result of this 

process. 

 
Figure 9. Schematic diagram of wavelet transform. It 

separates original waveform into 108 sub-bands, and 

calculates energy in 7.8ms in each band. 
 

 
Figure 10. Example of result of wavelet transform. 

Brightness represents energy in each time and each 

musical-pitch. 

We used the result of this process from foreground 

sound as "12TonesF", result from background sound as 

"12TonesB", and average of foreground and background 

as "12TonesM". 

4.3 Result of learning 

With our scheme and dataset, we generated musical 

instrument detection algorithms for mixed sound. 

Number of features is 1,000, and 165 generations were 

used in our evolutionary learning method. Figure 11 

shows the learning curve. For comparison, it also shows 

the result for extractors with single feature.  They are 

optimized with GP by selecting 3% of features most 

correlated with the label information in each generation.  

Compare phase  

difference between 2 channels 

Signal of left 

channel 

 (FL + BL) 

Signal of right 

channel 

(FR + BR) 

STFT 

STFT 

Frequency domain 

… 

… 

C
lassify

 to
 fo

reg
ro

u
n

d
 

an
d

 b
ack

g
ro

u
n

d
 

… 

… 

… 

… 

FL 

BL 

FR 

BR 

Foreground 

(FL + FR) 

Background 

(BL + BR) 

+ 

+ 

iSTFT 

iSTFT 

iSTFT 

iSTFT 

Original 

waveform 

Filter of each 

sub-band 

Sub-band 

signal 

Energy of 

each sub-band 

Time Time 

 ...

Convolution 

 ...

B9  

A#9  

A9  

D1  

C#1  

C1  

 ...

Time 

Time 

Musical 

pitch 

97



Poster Session 1
  

 

 

Figure 11. Learning curve. Dashed line represents the F-

measure on training dataset averaged over all musical 

instrument detectors, and solid line represents the F-

measure on testing dataset. Dotted line represents the F-

measure of the detector with single feature optimized with 

GP on testing dataset. 

As the learning curve shows, in the first generation, 

our detector realized average F-measures of 0.75 on 

testing dataset with features selected from 1,000 

randomly generated features of various sorts. In the final 

generation, it realized 0.88 with the feature set optimized 

with our scheme. There is very clear advantage over the 

result of extractor with single feature optimized with GP. 

And Table 4 shows the F-measures for each musical 

instrument in the final generation on testing set. 

 

Table 4. F-measures of each musical instrument detector 

in the final generation on testing set. 

Table 5. Part of highly-contributing features found in 

final generation. 

Finally, table 5 shows some examples of generated 

FEF. The first feature in table 5 takes log-frequency 

spectrum of foreground as input, calculates differential in 

each series along time axis, calculates standard deviation 

in each series along time axis, processes Hanning 

window to frequency series and calculates average from 

frequency series. “Difference” function in table 5 splits 

the input in two at the boundary specified by the 

parameter, computes the sums for the two parts, and 

outputs the difference of the sums. It is not easy to 

understand what is going on in these generated features 

explicitly. However, it looks like it found variety of 

features, not only ones like MFCC and Mpeg-7 but also 

unique features with alien concept. 

5. CONCLUSION 

We presented a novel method to automatically design a 

information extractors. We introduced a very flexible 

description of features which supports various kinds of 

data types, and a modified evolutionary learning method 

to optimize multiple features given a partially labeled 

dataset. The method generated complete musical 

instrument detectors for mixed sound with various 

undiscovered and specialized features. The detectors 

realized either equal or superior performance compared 

to other methods even though the feature set is designed 

automatically given only the dataset without human 

intervention. Now we are applying the method to build 

various kinds of detection or recognition algorithms such 

as beat detection, attribute estimation, melody line 

estimation and more, not just for music recognition but 

for image recognition. We would like to report these 

results in the future. 
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