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ABSTRACT

We present a two-stage approach for retrieval in a melodic
Query by Example system inspired by the BLAST algo-
rithm used in bioinformatics for DNA matching. The first
stage involves an indexing method using n-grams and re-
duces the number of targets to consider in the second stage.
In the second stage we use a matching algorithm based on
local alignment with modified cost functions which take
into account musical considerations.

We evaluate our system using queries made by real users
utilising both short-term and long-term memory, and present
a detailed study of the system’s parameters and how they
affect retrieval performance and efficiency. We show that
whilst similar approaches were shown to be unsuccessful
for Query by Humming (where singing and transcription
errors result in queries with higher error rates), in the case
of our system the approach is successful in reducing the
database size without decreasing retrieval performance.

1. INTRODUCTION

The transition to digital media and the growing popularity
of portable media devices over the past decade has resulted
in much research into new ways of organising and search-
ing for music. Of note are Content Based Music Retrieval
(CBMR) systems [21] which search the musical content
directly as opposed to using song meta-data for retrieval.

A specific case of CBMR is that of performing a melodic
search in a collection of music, where the input query can
be made either symbolically (e.g. text, score, MIDI con-
troller) [8, 9, 19, 22] or by the user singing/humming the
query, called Query by Humming (QBH) [4, 15]. For con-
venience we will refer to the symbolic input case as Query
by Symbolic Example (QBSE). Both QBSE and QBH rely
on an underlying model of melodic similarity [6]. In [17],
a detailed review of algorithms for computing symbolic
melodic similarity is provided. In recent years QBH sys-
tems have become increasingly popular, as they do not re-
quire musical knowledge such as playing an instrument or
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understanding musical notation. On the other hand, QBSE
can be advantageous over QBH in certain cases – firstly, it
affords more elaborate query specification, which might be
preferred by advanced users and music researchers. Sec-
ondly, it does not require the automatic transcription of
audio queries, which introduces additional errors into the
queries.

In [4] a detailed comparative evaluation of different al-
gorithms for QBH was carried out, comparing approaches
based on note intervals, n-grams, melodic contour, HMMs
and the Qubyhum system. The authors noted that the most
successful approaches lacked a fast indexing algorithm,
which is necessary in order to apply them to large databases.
They studied a potential solution to the problem using a
two-stage approach – an n-gram algorithm is used as a first
stage for filtering targets in the database. The remaining
targets are then passed to the second stage which uses a
slower note interval matching algorithm which has better
retrieval performance. The authors concluded that the ap-
proach was unsuccessful, as any significant improvement
in search time resulted in a dramatic degradation in re-
trieval performance. They attributed this degradation to the
errors introduced into the queries due to singing and tran-
scription errors, which inhibited successful exact matching
in the n-gram stage.

Nonetheless, other approaches for searching symbolic
data exist for which efficient indexing is possible. Set-
based methods (which also support polyphonic queries)
have been shown to be effective for both matching and in-
dexing – Clausen et al. use inverted files [3], Romming
and Selfridge-Field use geometric hashing [16], Lemström
et al. use index based filters [10] and Typke et al. use van-
tage objects [18]. For string based approaches (such as
ours) many efficient indexing algorithms exist for metric
spaces [2]. However, due to the melodic similarity measure
used in our system (section 2.1.3), we can not use these
algorithms and require an alternative solution (a recent so-
lution to indexing non-metrics is also proposed in [20]).

In the following sections we present a two-stage index-
ing and matching approach for a QBSE system, inspired
by the BLAST algorithm used in bioinformatics for DNA
matching [5]. The first stage involves an indexing method
(section 2.1.2) similar to the n-gram approach studied and
evaluated in [4]. As our system avoids the need to tran-
scribe user queries, the degree of errors in the queries de-
pends only on the user, and is lower as a result. Conse-
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quently, it allows us to considerably reduce the database
size for the second stage without degrading retrieval per-
formance. In section 2.1.3 we present the second stage
in which we perform matching using local alignment. We
then detail the evaluation methodology used to evaluate our
system, using real user queries utilising both short-term
and long-term memory. Finally in the results section we
show that this two-stage approach can be applied success-
fully in the case of QBSE, and study how the parameters of
the indexing and matching algorithms affect retrieval per-
formance and efficiency.

2. THE SONGSEER QBSE SYSTEM

2.1 System overview

SongSeer is a complete query by symbolic example sys-
tem. The user interacts with the system through a graphical
user interface implemented as a Java applet, allowing ac-
cess from any web-browser 1 . The interface is further de-
scribed in section 2.2. User queries are sent to a server ap-
plication which contains a database of songs and performs
the matching and returns the results to the client applet.

2.1.1 Query and target representation

The internal representation of user queries and database
targets is based on the one proposed in [15] – pitch is rep-
resented as pitch intervals and rhythm as LogIOI Ratios
(LogIOIR) [14]. This representation is independent of key
and tempo, as well as concise, allowing us to match queries
against targets even if they are played in another key or at
a different tempo.

The targets are extracted from polyphonic MIDI files –
every track in the MIDI file results in a single monophonic
target. Tracks that are too short, as well as the drum track
which is easily detectable are filtered out, but otherwise all
tracks are considered. This allows the user to search for
melodic lines other than the melody, though at the cost of
considerably increasing the database size and adding tar-
gets which could possibly interfere with the search.

2.1.2 Indexing

The first stage in our two-stage approach is the indexing al-
gorithm. Indexing is required in order to avoid comparing
the query against every target in the database, thus improv-
ing system scalability an efficiency. As previously noted,
our melodic matching is non-metric meaning we can not
use existing indexing approaches, leading us to propose an
alternative solution based on the BLAST algorithm.

The BLAST algorithm [5] was designed for efficiently
searching for DNA and protein sequences in large databases.
The steps of the original BLAST algorithm are the fol-
lowing: first, low-complexity regions or sequence repeats
are removed from the query. Then, the query is cut into
“seeds” – smaller subsequences of length n which are eval-
uated for an exact match against all words (of the same
length) in the database using a scoring matrix. High scor-
ing words (above a threshold T ) are collected and the database

1 http://www.online-experiments.com/SongSeer

is then scanned for exact matches with these words. The
exact matches are then extended into high-scoring pairs
(HSP) by extending the alignment on both sides of a hit till
the score starts to decrease (in a later version gaps in the
alignment are allowed). HSPs with scores above a cutoff
score S are kept, and their score is checked for statistical
significance. Significant HSPs are locally aligned, and an
expectation value E is calculated for the alignment score.
Matches with E smaller than a set threshold are reported
as the final output.

Our indexing algorithm is based on this concept of pre-
ceding the slower local alignment stage with a fast exact
matching stage. Given a query, we cut it into “seeds” as in
BLAST, and search for exact matches in the database. This
can be efficiently implemented by storing the targets of the
database in a hash table where every key is a seed which
hashes to a collection of all targets containing that seed.
We also implement the idea of filtering less informative
parts of the query as detailed in section 4.5. This first stage
allows us to return a much reduced set of targets, which we
then compare to the query using our matching algorithm.
A crucial parameter of this approach is the seed size n –
a longer seed will return less targets making the retrieval
faster, but requires a longer exact match between query and
target potentially reducing performance for queries which
contain errors.

2.1.3 Matching

For determining the similarity of a query to a target, we
use the dynamic programming approach for local align-
ment [13], similar to the one proposed in [15] with one
significant difference – in an attempt to make the match-
ing procedure more musically meaningful, we replace the
skip and replace costs in the local alignment algorithm
with cost functions. These functions determine the skip
and replace cost based on the specific pitch intervals and
LogIOIRs being compared. The underlying assumption is
that some errors should be penalised less heavily than oth-
ers, based on the errors we can expect users to make when
making a query:

• Repeated notes – the user might repeat a note more
or less times than in the original melody (for exam-
ple when translating a sung melody into piano strokes).
Thus, the penalty for skipping a repeated note should
be reduced.

• Pitch contour – the user might not remember the exact
pitch interval, but remember the pitch contour correctly
(big/small jump up/down or same). Thus, the penalty
for replacing an incorrect interval which has the correct
contour should be reduced.

• Rhythm contour – the user might not remember the ex-
act rhythm ratio between two notes, but remember the
“rhythmic contour” correctly (slower, faster or same).
Thus, the penalty for replacing an incorrect LogIOIR
which has the correct contour should be reduced.

• Octave errors – the user might play the correct pitch
class but in the wrong octave relative to the previous
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note. Thus, the penalty for replacing a note which is
off by an integer number of octaves should be reduced.

Following this rationale, we define two cost parame-
ters – a full cost and a reduced cost. When one of the
aforementioned cases is detected the cost functions return
the reduced cost, and in all other cases the full cost. An-
other issue is the relative importance we give to the pitch
and rhythm match scores. As the pitch and rhythm of a
query might be represented with different degrees of accu-
racy, the match scores should be weighted differently when
combining them to obtain the final match score. To do
this we introduce a pitch factor and rhythm factor which
weight the pitch and rhythm scores when combining them.

By default, the full cost is set to 2 and the reduced cost
to 1, and both pitch and rhythm factors are set to 1 (so
that the pitch and rhythm scores are weighted equally and
summed into the final score). In the results section we
explain how these parameters are optimised based on real
user queries.

2.2 The SongSeer GUI

The SongSeer GUI is displayed in Figure 1. Two query in-
put methods are provided – a text search allowing to make
textual queries similar to the ones supported by the The-
mefinder [8] system by Huron et al. (including pitch and
rhythm contour), and a virtual keyboard that can be played
using the mouse, the computer keyboard or a connected
MIDI controller. Once a query is made the top 10 results
are displayed back to the user with a percentage indicat-
ing the matching degree, and the user can select a song
and play back the corresponding MIDI file stored in the
database.

Figure 1. The SongSeer user interface.

3. EVALUATION METHODOLOGY

3.1 Test collections and machines used

For the evaluation, we compiled a corpus of 1,076 poly-
phonic MIDI files of pop and rock music, including 200
songs by the Beatles. After ignoring short tracks and drum
tracks, this translates into 6,541 targets in the database. For

scalability tests we have also compiled several more cor-
pora of increasing size, the largest containing 18,017 songs
which translates into 88,034 targets.

All user experiments were run on standard pentium IV
PCs running windows XP. The quantitative evaluation was
run on a server machine with two Intel R©Dual Core Xeon R©
5130 @ 2GHz with 4MB Cache and 4GB RAM, running
Linux 2.6.17-10 and Java HotSpotTM 64-Bit Server VM.

3.2 Collecting user queries

We conducted a user experiment with 13 participants of
varying musical experience, ranging from amateur guitar
players to music graduates. The first part of the experiment
involved a usability test in which the subjects were asked to
complete a set of tasks using the SongSeer interface, which
also allowed them to familiarise themselves with the sys-
tem. The second part involved the subjects making queries
which would then be used to perform a quantitative eval-
uation of the system. For the purpose of the quantitative
evaluation, all subjects were asked to play on the virtual
keyboard, using either the mouse or computer keyboard.

To collect queries, subjects were presented with a list
of 200 Beatles songs, and asked to record queries of songs
they can remember from the list. This stage simulates the
event where a user remembers part of a song they have
not heard recently, and resulted in 63 “long term memory”
queries. Next, subjects were asked to listen to 10 audio
recordings of Beatles songs and then record a query, simu-
lating the event where the user has recently heard the song,
resulting in 123 “short term memory” queries. This gives
us a total of 186 real user queries for system evaluation.

3.3 Evaluation metrics

As there is always only a single correct result (the database
contained no cover versions), we use a metric based on the
rank of the correct song based on match score, the Mean
Reciprocal Rank (MRR) which is given by:

MRR =
1
K

K∑
i=1

1
ranki

(1)

where K is the numbers of queries evaluated and ranki is
the rank of the correct song based on the match score for
query i. This is similar to taking the average rank of the
correct song over all queries but is less sensitive to poor
ranking outliers, and returns a value between 1/M and 1
(where M is the number of songs in the database) with
higher values indicating better retrieval performance.

It is important to note however that as it is possible for
several songs to have the same match score, they may share
the same rank (in which case they are returned by alpha-
betical order in the results list). In order to evaluate per-
formance from a user perspective (where the position of a
song in the result list is significant), we introduce a second
metric – the ordered MRR (oMRR) which is computed in
the same way as the MRR but where the rank is based not
on the match score but on the actual position of the song in
the final results list.
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4. RESULTS

4.1 Initial results

In order to asses the performance of our approach, we start
by estimating a baseline performance for the problem. The
baseline is estimated using the following procedure: Given
a query, we randomly generate the rank of the correct song
in the result list (between 1 and 1076). We repeat this pro-
cess 99 times for the same query, saving the best randomly
generated rank out of the 99 repetitions. We perform this
procedure for all 186 queries, and use the saved ranks to
compute an overall oMRR. This gives us an oMRR of 0.211
(with a variance of 0.051).

Next we turn to evaluate our algorithm. As a first step,
we compute the MRR and oMRR taking only the pitch in-
formation into account, using a seed size n = 3 and the
matching parameters set to their default values (full cost =
2, reduced cost = 1). The results are presented in Table 1.

Query Group #Queries MRR oMRR
All queries 186 0.800 0.659

Long term memory 63 0.765 0.627
Short term memory 123 0.818 0.675

Table 1. Initial results.

The table shows that our oMRR values are significantly
(P < 10−10, Wilcoxon rank-sum test) higher than the
baseline. Though results for the short term memory queries
are slightly higher than for the long term memory queries,
the difference is not statistically significant, and for the rest
of the evaluation we use all the queries together. Finally,
we observe that, as expected, the MRR values are higher
than the oMRR values. This suggests that songs are not
sufficiently distinguished using the default parameters.

4.2 The effect of rhythm on performance

We now include the rhythm information in the matching
procedure, setting the pitch and rhythm factors to 1:1. The
MRR and oMRR go down from 0.800 and 0.659 (pitch
only) to 0.677 and 0.594 (pitch+rhythm) respectively. This
indicates that giving rhythm equal importance as pitch de-
grades performance. We could argue that as the rhythm
information is less detailed compared to the pitch informa-
tion, it will match a greater set of songs, so when given
equal importance as the pitch information it ends up de-
grading the results. Another possibility is that due to the
use of a virtual keyboard rather than a real one users found
it harder to accurately play the rhythm of a query.

4.3 Choice of seed size

As previously mentioned, in [4] it was shown that a two
stage retrieval process for QBH was unsuccessful in reduc-
ing search time without considerably degrading retrieval
performance. In Figure 2 we evaluate the effect of the seed
size n in our indexing algorithm (the first stage of our two-
stage approach) on retrieval performance and search time.
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Figure 2. MRR, oMRR, retrieval time and DB reduction
vs seed size.

Figure 2 shows that the number of targets to search re-
turned by the indexing algorithm is almost halved every
time we increase the seed size, and consequently the search
time goes down. Interestingly, the MRR and oMRR val-
ues remain stable as we increase the seed size (only the
MRR for pitch only shows slight signs of decline). Increas-
ing the seed size n does however require the user query to
contain at least n sequential correct pitch intervals, in ad-
dition to increasing memory and storage requirements for
the database. All in all it is a trade-off between retrieval
performance, efficiency and resource usage. For the rest of
the evaluation we choose a seed size of 4, providing a sig-
nificant reduction in database size (reduced to 23%) with
practically no degradation of retrieval performance.

4.4 Parameter optimisation

In section 2.1.3 we introduced the notion of having a full
cost and a reduced cost in the matching algorithm, and in
section 4.2 we saw that giving rhythm equal importance
as pitch in the matching is detrimental to retrieval per-
formance. In this section we optimise these parameters,
namely the ratio between the full and reduced costs, and
the ratio between the pitch and rhythm factors.

To do so we divided the queries into two groups of
roughly equal size – the optimisation is performed using
the queries of group 1, and then validated on the queries
of group 2. For the optimisation we use the Simulated
Annealing approach for global optimisation [7]. The per-
formance for the two query groups before optimisation is
given in Table 2.

Query Pitch:Rhythm Full:Reduced MRR oMRR
Group Ratio Cost

1 1:1 2:1 0.704 0.646
2 1:1 2:1 0.634 0.574

Table 2. Results for the groups before optimisation.

We start by optimising the pitch and rhythm weighting
factors. The effect of these parameters on performance is
visualised in Figure 3. The optimal pitch to rhythm ra-
tio was found to be 3:1 (Table 3), and is used in all fur-
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Figure 3. oMRR as a function of the pitch and rhythm
factors.

ther evaluations. A slightly higher MRR value could be
achieved by ignoring rhythm altogether, but at the cost of
significantly reducing the oMRR indicating that the rhythm
information is useful for distinguishing between targets which
have the same pitch match score.

We next perform the optimisation for the cost parame-
ters in the matching algorithm. The optimal values were
found to be 3 for full cost and 1 for reduced cost (Table
3 last row). This suggests that the modified cost functions
provide an improvement to performance, as otherwise the
optimal full and reduced costs would have been equal to
each other (Table 3 penultimate row).

Pitch:Rhythm Ratio Full:Reduced Cost MRR oMRR
1:1 2:1 0.704 0.646
3:1 2:1 0.784 0.745
3:1 1:1 0.759 0.717
3:1 3:1 0.787 0.761

Table 3. Results for group 1 before and after pitch:rhythm
optimisation and full:reduced optimisation.

Finally we compute the MRR and oMRR for query group
2 and for all queries together using the optimised param-
eters. Figure 4 shows that in all cases performance is im-
proved, though only in the case of oMRR for all queries
(Group 1&2) is the improvement statistically significant
(p=0.018, Wilcoxon rank-sum test).

4.5 Seed filtering

Next we examine the distribution of seeds in the queries
and the database, displayed in Figure 5.

Both distributions constitute a power law probability
distribution, obeying a kind of Zipf’s law for musical inter-
val sequences [23]. Accordingly, the most frequent seeds
comprise the largest proportion of the database but convey
the least amount of information useful for distinguishing
between songs. By filtering from the query the seeds which
are most common in the database we can further reduce the
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Figure 4. MRR and oMRR results, before and after opti-
misation.
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Figure 5. Seed distributions for queries and songs in the
database.

fraction of the database returned by the indexing algorithm
while maintaining retrieval performance.

When filtering just the three most common seeds in the
database, we reduce the database size by a further 40%
(from 23% to 14% of the original size) while the MRR and
oMRR values go down by less than 1.3%. This concept
could be further extended by introducing a seed weight-
ing function, for example using tf ∗ idf [1] like weighting
based on seed distributions. This could also help in rank-
ing songs which have the same match score after the sec-
ond stage, however we have not explored this option and
leave it for future work.

4.6 Scalability

Finally, we evaluate how retrieval performance and effi-
ciency are affected as we scale the database size up to
18,017 songs which translates into 88,034 targets. The re-
sults are presented in Figures 6 and 7.

First we note that our indexing algorithm provides a
considerable reduction in the fraction of the database re-
turned by the first stage, reducing it to 15% of its origi-
nal size. Nonetheless, further work would be required for
our approach to be applicable to collections of millions of
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gets in the database.
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Figure 7. MRR and oMRR vs numbers of targets in the
database.

songs, ideally obtaining a sublinear relation between the
number of targets in the database and the number of tar-
gets returned by the indexing stage.

Next we note that both the MRR and oMRR decrease as
O(log(n)) as the database size n is increased (R2 > 0.98),
indicating that performance scales well with database size.

5. CONCLUSIONS

In this paper we introduced a two-stage retrieval approach
for a melodic QBSE system. We demonstrated that whilst
for QBH systems similar approaches were unsuccessful,
for QBSE this approach can successfully reduce the database
size while maintaining high MRR values. We provided
a detailed study of the effect of different parameters of
the system, namely the seed size, the relative weighting
of pitch and rhythm and the full and reduced costs in the
matching algorithm.

Finally we consider some ideas for future work. Instead
of considering almost every track in a MIDI file as a tar-
get, we could aim to extract only the most relevant melodic
parts of the piece, as done in [11, 12]. Next, it would
be interesting to further study the seed distributions in the
queries and the database, which could help develop more
elaborate seed filtering and/or a seed weighting scheme. 2
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