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ABSTRACT

Structural music analysis is used to reveal the inner work-
ings of a musical composition by recursively applying re-
ductions to the music, resulting in a series of successively
more abstract views of the composition. Schenkerian anal-
ysis is the most well-developed type of structural analy-
sis, and while there is a wide body of research on the the-
ory, there is no well-defined algorithm to perform such an
analysis. A automated algorithm for Schenkerian analy-
sis would be extremely useful to music scholars and re-
searchers studying music from a computational standpoint.
The first major step in producing a Schenkerian analysis
involves selecting notes from the composition in question
for the primary soprano and bass parts of the analysis. We
present an algorithm for this that uses harmonic and melodic
analyses to accomplish this task.

1. INTRODUCTION

Numerous tasks in music information retrieval could be ac-
complished more effectively if information about musical
structure were readily available. For example, in the task
of retrieving musical passages that are similar to a given
passage, having structural analyses available would allow
similarity metrics to be based on the underlying musical
structure of a composition as well as on the musical sur-
face. An algorithm for structural analysis of music would
therefore be an indispensable resource in music informa-
tion research.

Schenkerian analysis [1] is a type of music analysis that
emphasizes finding structural relationships among the notes
of a composition. Developed by the Austrian music theo-
rist Heinrich Schenker, Schenkerian analysis differs from
other types of analysis that focus on a single aspect of mu-
sic, such as the harmony or melody, to the exclusion of
other aspects. Schenkerian analysis harnesses all aspects
of a piece together to create an analysis that explains how
various notes in the piece function in relation to others.

Of particular importance in Schenkerian analysis is the
identification ofstructural dependencesamong groups of
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notes. If the way in which a noteX functions in a musi-
cal passage is due to the presence of another note or group
of notesY , thenX is said to be dependent uponY , and
Y is said to be at a higher structural level thanX. The
process of finding structural dependences proceeds recur-
sively during an analysis. The final set of dependences can
be depicted as a tree, with the surface-level notes as the
leaves. With each structural dependence located, the more
structurally important notes are elevated to higher levels.

Though a tree theoretically can show all the hierarchi-
cal levels of a Schenkerian analysis, typically analyses are
illustrated through a sequence ofSchenker graphs. These
graphs are visual depictions of a few contiguous levels of
the note hierarchy, using staves with notes as in common
music notation, but using other notation symbols such as
stems, beams, and slurs to show relationships among notes
rather than timing or phrasing information.

Because Schenkerian analysis primarily focuses on the
main melodic line and the main harmonic bass line of the
music in question, Schenker graphs are often presented on
two staves, with the primary melodic line on the upper
staff and the supporting bass harmony tones on the lower
staff. Notes of inner voices are occasionally shown on the
graphs, but are sometimes omitted when they serve to only
fill out the harmony. We focus onforeground graphs, the
graphs that show the structural levels closest to the musi-
cal surface. A foreground graph is usually the first graph
constructed when completing a Schenkerian analysis; all
subsequent graphs are based — directly or indirectly — on
the foreground graph. Therefore, it is critical to choose the
correct set of notes to appear in the foreground graph. We
will call a foreground graph, after notes have been selected
for its staves but before any reductions have been applied,
a preliminary foreground graph. Consider the first eight
measures of Schubert’sImpromptu No. 2 in A-flat major,
shown in Figure 1. A preliminary foreground Schenker
graph for theImpromptu, with appropriate notes in the so-
prano and bass parts, would look like Figure 2.

In this paper, we present and analyze an algorithm, FORE-
GRAPH, for identifying which notes in a score should be-
long on the soprano and bass staves of a preliminary fore-
ground Schenker graph, based on analyses of harmony and
voice leading. We build on the work of Kirlin and Utgoff
[2], whose IVI system requires, as a first step, isolation of
the primary soprano and bass parts prior to analysis. Au-
tomating Schenkerian analysis has been studied recently
by Marsden [3–5] and Marsden and Wiggins [6]. These
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Figure 1. An excerpt fromSchubert’s Impromptu No. 2 in A-flat major.
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Figure 2. A preliminary foreground graph constructed by
hand from theImpromptu.

lines of work are promising, but they have only been tested
on short, sometimes synthetic, musical phrases. Lerdahl
and Jackendoff developed a grammatical approach to mu-
sical structure in [7], which Hamanaka, et. al. [8] turned
into an algorithm. Their system, however, requires manual
adjustment of many parameters that differ for each musical
composition. Older work by Kassler [9] and Smoliar [10]
demonstrated understanding of the principles involved in
automating analysis, but did not provide any algorithms.

2. COMPUTATIONAL METHODS FOR
HARMONIC AND MELODIC ANALYSIS

Schenkerian analysis is based on the principles of harmony
and voice leading. These two aspects of a composition
must be examined prior to beginning an analysis. Since we
desire a fully-automated system for producing foreground
graphs, we must examine various algorithms for determin-
ing the harmony at various points in a composition, and the
voice leading possibilities for any note in a piece.

We have chosen MusicXML as our representation of
choice. MusicXML is a file format that represents common
Western music notation by encoding the pitches and dura-
tions of notes. Though the MIDI representation is more
widely used than MusicXML, the latter format encodes an
additional wealth of information that the former does not
supply, such as key and time signatures, stem and beaming
information, and slurs and phrase marks.

One can look at harmonic analysis as occurring in two
phases. First, a chord-labeling component assigns chord
labels (such as “C Major”) to segments of a composition.
A second pass then uses the chord labels to assign func-
tional Roman numerals to segments.

2.1 Chord Labeling

A chord labeling component must divide a composition
temporally into segments, where each segment corresponds

to a single harmony. We use a variant of Pardo and Birm-
ingham’s HARMAN algorithm [11] to accomplish this.

HARMAN uses two separate algorithms to perform chord
labeling. Thelabeling algorithmis concerned with deter-
mining the best chord label for a given segment of music
(a segment being an interval of time with fixed starting and
ending times), and thesegmentation algorithmdetermines
the points in the music where the harmony changes. A
harmony can change at apartition point: any place in the
music where a note starts or stops.

While HARMAN does a very good job “out of the box,”
we use a modified version of the algorithm and detail our
changes below.

• Meter — HARMAN does not take the meter of the
piece into account, and sometimes it chooses a par-
tition point in a metrically weak position that is ad-
jacent to a metrically stronger one. Because it is
preferable to have a change of harmony in an anal-
ysis at a metrically strong position [12], we force
HARMAN choose each measure boundary as a par-
tition point.

• Octave doubling — Because HARMAN analyzes
each note in a segment independently, often notes
that are doubled at the octave exert too much of an
influence over the chord labeling algorithm. There-
fore, when analyzing a segment, we consider multi-
ple instances of notes with the same pitch class and
duration as a single note. For example, in Figure
1, the notes of the melody in measures 5–7 that are
doubled at the octave will not be counted twice.

• Neighbor tones — Our version of HARMAN ig-
nores “obvious” neighbor tones within segments. An
obvious neighbor tone is a noteY that occurs in a
note sequenceX − Y − Z whereX and Z have
the same pitch, and are separated fromY by a half-
step. Without this correction, HARMAN has trouble
distinguishing between chord tones and non-chord
tones in heavily figurated contexts.

2.2 Assignment of Roman Numerals

Given a chord labeling, the remaining task in harmonic
analysis is mapping the chord labels (such as “C Major”)
to Roman numeral labels (such as “V6”). While we have
investigated algorithms for computing the key of a compo-
sition and the locations of any modulations and toniciza-
tions, we restrict ourselves for the remainder of this dis-
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cussion to non-modulating pieces whose key is encoded
correctly in their MusicXML representation. As FORE-
GRAPH, the foreground Schenker graph generation algo-
rithm presented in the next section, relies on a correct Ro-
man numeral analysis, placing this restriction on the input
music makes us more certain that we are supplying correct
Roman numerals to FOREGRAPH.

The second phase detects tonicizations by looking for
consecutive chords where the first chord functions func-
tions as a temporary dominant to the second. For example,
in the key of C major, this would detect the chord sequence
“D Major – G Major” and change the harmonic analysis of
“II – V” to “V/V – V.” We stipulate that the first chord
cannot occur normally in the original key, to eliminate the
possibility of the common “I – IV” chord sequence being
reinterpreted as a tonicization of the IV chord.

2.3 Voice Leading Analysis

A voice leading analysis determines, for every note in the
piece, which notes could logically follow from that note,
according to the principles of voice leading [12]. Algo-
rithms for determining voice leading, however, can differ
in their interpretations ofimplicit polyphony[13]. For ex-
ample, given the four notes in the first measure of Figure
3, some algorithms would determine that all four notes
belong to a single voice, whereas others would find two
voices and interpret the four notes as standing for the triads
shown in the second measure. The second interpretation is
an example of implicit polyphony.

��� �� �� ���
Figure 3. An example where the voice leading is ambigu-
ous.

Schenkerian analysis, as it gives primary consideration
to the linear connections in music [14], requires a voice
leading analysis that uncovers implicit polyphony. A rea-
sonable way to handle this is to permit a voice-leading
connection between two notes only if the motion between
them is stepwise.

If one takes this stance, it is easy to construct an algo-
rithm for determining the voice leading for a given compo-
sition. For a noten in a piece, we examine the set of notes
that begin at times later than the ending ofn (there can-
not be a voice-leading connection between two notes that
overlap in time). Noten may have up to three voice lead-
ing connections: (1) a step-down connection, (2) a step-up
connection, and (3) a same-pitch connection. For each type
of connection, we find the earliest note that satisfies the
criteria for that kind of connection. We also require that
if n has a same-pitch voice-leading connection to a note
m, thenn may not have any stepwise voice-leading con-
nections to notes that begin later thanm. This is because
voice-leading connections between notes of identical pitch
are typically stronger than stepwise connections.

3. PRODUCING PRELIMINARY FOREGROUND
GRAPHS

Recall that our goal is to produce preliminary foreground
Schenker graphs like the one in Figure 2. Since the purpose
of a foreground graph is to capture the primary soprano and
bass tones of the piece, constructing such a graph reduces
to selecting notes for the soprano and bass parts.

In most circumstances, the primary melody (soprano)
tone is the highest one heard at any point in time, and
the primary bass tone is the lowest. Therefore, FORE-
GRAPH is based on the idea of selecting the highest pitch
for the soprano line and the lowest for the bass line. How-
ever, complications arise in situationswhere the primary
bass or soprano tones persist in time even though they may
have stopped sounding.Consider an Alberti bass line, such
as in Figure 4. Because this figure is outlining a chord,
only the lowest note of the chord belongs to the primary
bass line (the other notes belong to inner voices). The
low Cs, though they are only represented on the page as
eighth notes, persist in the musical mind through the entire
measure as if they were sounding constantly; the true bass
line does not skip between the notes of the chord. This is
the reason why we require a voice leading algorithm that
can detect cases of implicit polyphony, not just in cases
of arpeggiation, but in any case where the bass or soprano
part may move between voices.

�� � �� �� ���

Figure 4. An Alberti bass line.

Still, there are cases where voices start and stop mid-
composition, and an algorithm that blindly follows the ini-
tial bass and soprano lines stepwise from the start of the
piece to the end would not suffice in cases, for example, of
register transfer. Therefore, FOREGRAPH chooses appro-
priate bass and soprano tones for each harmonic segment
defined by the harmonic analysis algorithm, and then fol-
lows the tones via voice-leading connections to fill out the
segment; pseudocode is given in Figure 5. For each har-
monic segment in a composition, FOREGRAPH finds the
lowest and highest pitched notes that belong to the current
harmony; these notes are added to the primary bass and
soprano parts. The FILL RANGE procedure then adds addi-
tional notes by following voice-leading connections from
the initial notes added in the segment; connections are fol-
lowed both backwards and forwards in time, and notes are
only added if they do not overlap in time with any other
notes already added to the segment.

The EXTENDVOICE procedure then allows the musical
line in a harmonic segment to be extended into following
segments, stopping only upon reaching a note that is con-
sonant in the prevailing harmony for the segment. Because
the primary notes are determined independently for each
harmonic segment, it is possible that the soprano or bass
lines fleshed out by FILL RANGE will not connect musi-
cally over a segment break. EXTENDVOICE permits each

425



Poster Session 3

line to be followed to a logical conclusion without adding
too many notes of what may develop into an irrelevant in-
ner voice. Because EXTENDVOICE halts upon adding a
consonant note in the prevailing harmony, leaps are possi-
ble in the computed musical lines over segment breaks.

After choosing the notes for the soprano and bass lines,
they are displayed as noteheads on staves as a prelimi-
nary foreground graph. FOREGRAPH produced the output
shown in Figure 6 for the Schubert Impromptu in Figure 1.

�

IV
6
5

�

�

III
6

� �

I
6

�

���
V
4
2

�

��

�����
�����

�

�

�

�

I

�

�

V
4
3

�

� � �

A
�
: V

�
� �

I
6

�

��

V
6
5

�

� �

I

�

��

Figure 6. A preliminary foreground graph produced by
FOREGRAPH.

If one compares the hand-constructed graph in Figure 2
to the one produced by FOREGRAPH in Figure 6, only a
few differences are apparent. One is that the computer-
constructed graph contains instances of adjacent notes of
identical pitch. FOREGRAPH does not reduce these cases
to single notes because although this occurs frequently in
foreground graphs, it is not always done consistently.

The only other differences in the computer-generated
analysis are the omitted “V” chord near the middle of the
analysis, and the added “III6” chord. Both of these differ-
ences derive from the harmonic analysis component used
as a preliminary step to FOREGRAPH. The V chord in the
hand-constructed graph was not generated in the computer
analysis as it was absorbed into the I chords on either side.
Similarly, the first-inversion III chord arises from a misin-
terpretation of chord tones and non-chord tones.

4. EVALUATION AND ANALYSIS

In order to evaluate the correctness of FOREGRAPH, we
require a set of input music scores and correct foreground
graphs for them. We turned to a standard Schenkerian anal-
ysis textbook [14], and encoded the first twelve musical
examples that had correct analyses provided, and whose
analyses contained soprano and bass parts (two of the ex-
amples were monophonic, and so were omitted). The ex-
amples are all multi-measure excerpts from common prac-
tice period works.

Our method of evaluation is based on the standard met-
rics of precision and recall. If one views each note in a
composition as an individual document, then constructing
a preliminary foreground graph is equivalent to executing
two queries: one query to retrieve all notes belonging to
the soprano part, and a second query to retrieve all notes
belonging to the bass part. We also need to define what it
means for a note to be “relevant” and “retrieved” to com-
pute precision and recall. We consider a note “retrieved”
for a query if it appears in the corresponding part (soprano
or bass) for the computer-constructed foreground graph.
Defining “relevant” is complicated because the foreground

graphs as they appear in the textbook (1) often contain per-
tinent pitches of inner voices along with the primary so-
prano and bass parts, and (2) already have had some re-
ductions applied in most cases, which removes some notes
from the ground-truth that would appear in the computer-
generated graphs.

Therefore, we have two notions of “relevant” and com-
pute statistics based on each definition. In our first set of
calculations, we consider a note to be relevant for the so-
prano (bass) query if it is present on the upper (lower) staff
of the Schenker graph in the textbook analysis. This defi-
nition, however, considers many notes as relevant that will
not be present in the computer-generated analyses as they
belong to inner voices. To remedy this, our second defini-
tion considers a note to be relevant for the soprano (bass)
query if it is present on the upper (lower) staff in the Schen-
ker graph in the textbook analysis, and has a stem pointing
up (down). If it is clear that stem direction in a graph isnot
being used to indicate to which voice a note belongs (and
the direction is only determined by aesthetics), the restric-
tion on stem direction is ignored, and only the presence of
the stem is considered. Stems in graphs are indications of
structural importance, and therefore these are notes that we
are particularly interested in having FOREGRAPH identify-
ing correctly.

We ran the FOREGRAPH algorithm on each example
and compared the resulting graphs to the textbook’s graphs.
For each example, and for each part (soprano and bass),
we computed precision (the fraction of retrieved notes that
were also relevant) and recall (the fraction of relevant notes
that were also retrieved). To provide a baseline for compar-
ison with FOREGRAPH, we evaluated a second foreground
graph creation algorithm, RANDOM, that selects notes for
the soprano and bass parts from the input music randomly.
RANDOM always chooses the same number of notes for the
soprano and bass parts for each example as were selected
by FOREGRAPH for the same example. We calculated av-
erage precision and recall for RANDOM over 500 runs. All
of the precision and recall statistics for FOREGRAPH and
RANDOM are displayed in Table 1. To show more clearly
the improvement of FOREGRAPH over RANDOM, Figure 7
compares the F1 measure (harmonic mean of precision and
recall) for each musical example for the two algorithms.

One of the excerpts deserves special mention. The ex-
cerpt from Schubert’sSymphony in B minorconfused FORE-
GRAPH as the accompaniment part is pitched higher than
the primary melody. The analysis constructed by FORE-
GRAPH contained a harmony line in the soprano part, and
the true melody was not present at all. Because this single
example distorted the statistics for the soprano part, Ta-
ble 1 contains entries for the aggregate precision and recall
with and without theSymphonyincluded.

Overall, we are encouraged by the results of the evalu-
ation. We are especially pleased with the recall values for
the stemmed notes definition of relevance; disregarding the
SchubertSymphony, FOREGRAPH retrieved almost 90%
of the relevant bass notes, and almost 80% of the relevant
soprano notes. Figure 7 clearly indicates that FOREGRAPH
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procedure FOREGRAPH

Let V (x, y) be true if there is a voice leading connection between notesx andy.
Let S be a set of notes for the primary soprano part.
Let B be a set of notes for the primary bass part.
for each harmonic segmentH in the compositiondo

Let n be the lowest pitched note inH that is a member ofH ’s harmony.
Add n to B

FILL RANGE(n,B,H)
EXTENDVOICE(B,H)
Let n be the highest pitched note inH that is a member ofH ’s harmony.
Add n to S

FILL RANGE(n, S,H)
EXTENDVOICE(S,H)

procedure FILL RANGE(noten, partP , harmonic segmentH)
Initialize queueQ to contain justn
while Q is not emptydo

Remove the top note from the queue, call itm

Let N be the set of all notes such that ifx ∈ N , then eitherV (m,x) or V (x,m), andx is in H.
SortN by increasing length of time betweenm and each note inN
if N is empty,then return
for each notex ∈ N do

if x does not conflict with any notes inP then addx to P and addx to Q

procedure EXTENDVOICE(partP , harmonic segmentH)
Let curr be the last note inH that is also inP
while curr is not consonant inH ’s harmonydo

Let N be the set of all notes such that ifx ∈ N , thenV (m,x)
if N is empty,then return
Let n be the note inN with the minimum length of time tocurr
Add n to P

curr← n

Figure 5. The FOREGRAPH algorithm.

is a large improvement over choosing notes randomly.

The two issues mentioned earlier that complicated choos-
ing an appropriate definition of relevance cause the preci-
sion and recall values to not represent the true quality of
the graphs produced by FOREGRAPH. The first issue is
that many of the ground-truth analyses contain notes of in-
ner voices on the upper and lower staves, as well as notes
from the primary soprano and bass parts. The bass part of
the ChopinNocturne, for example, contains arpeggiated
chords. FOREGRAPH only included the lowest note of
each chord in the primary bass part, while the textbook in-
cluded all of the notes of each chord, with all but the lowest
given as inner voices. This lowered the recall value for all
bass notes in this example to 23.5%.

The second issue is that many of the textbook’s graphs
have already had simple reductions applied to the musi-
cal surface; repeated notes in the textbook’s graphs have
also been removed in many cases. Because FOREGRAPH

only selectsnotes for the foreground graphs and does not
perform any reductions, many of the precision values are
lower than they would be if those reductions had not been
done in the textbook’s graphs. For example, in theFrench
Suite; FOREGRAPH placed many notes in the soprano part
that were not present in the textbook’s graph because re-
ductions had already been applied to them.

We are confident that FOREGRAPH is ready to be used
as a precursor to an actual Schenkerian reduction algo-
rithm. Because we are only selecting notes to be placed
in the soprano and bass parts, the output of FOREGRAPH

is ready for processing to search for reductions, and any
low precision statistics should not be alarming.
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