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ABSTRACT

Invariances are central concepts in content-based music re-
trieval. Musical representations and similarity measures
are designed to capture musically relevant invariances, such
as transposition invariance. Though regularly used, their
explicit definition is usually omitted because of the heavy
formalism required. The lack of explicit definition, how-
ever, can result in misuse or misunderstanding of the terms.

We discuss the musical relevance of various musical in-
variances and develop a set-theoretic formalism, for defin-
ing and classifying them. Using it, we define the most
common invariances, and give a taxonomy which they in-
habit. The taxonomy serves as a useful tool for idetinfying
where work is needed to address real world problems in
content-based music retrieval.

1. INTRODUCTION

To effectively perform content-based music retrieval
(CBMR), the intrinsic features of music must be taken into
account. Some of the most important features correspond
directly with invariances. Invariances related to pitch,
tempo and duration are widely used, but usually without
proper definition or discussion of their inter-relationship.
Indeed, a single term is sometimes used to name multiple
phenomena, admitting confusion about its real meaning.

Western musical scales may be transformed, or trans-
posed, to any other key so that the corresponding pitch in-
tervals remain intact. Indeed, Western people tend to listen
to music analytically, observing pitch intervals rather than
absolute pitch values. Thus, musical works are identified
regardless of the prevalent musical key. The same observa-
tion is valid for tempo: two pieces of music are considered
the same if the other is just played slower than the other
(i.e., a different time scale is used). So transposition and
time-scale invariance are important in CBMR applications.

However, in some cases mere transposition and time-
scale invariance are not enough. For example, in query
by humming, untrained singers often cannot produce pitch
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intervals accurately enough to constitute a match. To ad-
dress this, several pitch class generalizations have been
suggested, such as pitch contour [9] and qpi classification
[4]. Using these generalizations, only direction of inter-
val (contour) or the order of magnitude of interval (small,
medium or large) is observed, respectively.

In this paper, we will define what it means when a rep-
resentation or a method (algorithm) is invariant under a
given notion arising from a musical phenomenon. We will
give definitions for widely used invariances related to three
main dimensions of music: pitch, onset time and duration.
The latter two are temporal features and, usually, the third
is derivable from the second. However, it is sometimes use-
ful to separate them since the invariances as applied, cate-
gorised by our taxonomy, may differ. We will also define a
set of more abstract, structural invariances. All of these in-
habit a taxonomy that shows the relationships between the
invariances, and also serves as a tool for identifying areas
where further work in CBMR is needed.

2. DEFINING THE INVARIANCES

2.1 The representation

Let us start by defining the notion of a representation. In
this context, we are modelling an observed phenomenon
(music perception), and it is important not to presuppose
that the data is the phenomenon; therefore, making the rep-
resentation explicit is important too.

Let the size of a set S be denoted by |S|. Let the set
of ordered subsets of set S of size between n and m, in-
clusive, be denoted by Sn...m, and where n = m, Sn; S∗

is the power set of S. Given a set of features, fi ∈ F ,
each with a unique type, τi ∈ τ , identified by an injection
T : F 7→ τ , an abstract representation, ρ, is a subset of F .
The type of each feature should be a mathematical specifi-
cation (e.g., linear Abelian group for pitch) which is cho-
sen to model the corresponding reality appropriately [13].
Given an abstract representation, ρ, a concrete representa-
tion, r, is a set of tuples

{〈f,Σf ,�f ,Φf ,Πf 〉 | f ∈ ρ}

where Σf is an alphabet adequate to express f ,�f is a par-
tial order on Σf , Φf and Πf are sets of functions and predi-
cates, respectively, which apply to members of Σf defining
the operations and tests required for the algebra of T (f).
Wiggins et al. [13] give detailed examples of datatypes for
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Feature invariances Structural invariances
Pitch Onset Time Duration

Weaker/more specific transposition (2) ω-permutation (11/1)
↓ pitch-transposition (3) time-position (6) strongly permutation (11/2)
↓ pitch-warp (4) time-scale (7) time-scale (7) ω-concatenation (12/1)

Stronger/less specific Parsons (5) time-warp (9) duration-warp (8) strongly concatenation (12/2)

Table 1. A sparse taxonomy on considered invariances. An invariance in the table subsumes the invariances above it, if no
horizontal line appears in between. The number in parenthesis is that of the associated definition in Sections 2.4 and 3.

pitch and time. In general, �f is needed for the working
of our formalism, not for the representation itself (there
would be a member of Πf for this, where appropriate); it
is kept separate so that it may be different from any orders
that are internal to the feature implementation, if necessary.

Let .̂ be a function which maps a concrete representation
to its corresponding abstract representation.

Given a concrete representation, r, let an element e,
e ∈ r, be a set of values, ei, with concrete datatypes corre-
sponding with r.

Let a dataset, E, be a set of elements. E is in r iff each
ei in E is in r.

2.2 A concatenator

To define invariances, we use a concatenator constructor.
A concatenator, Cr′

ω (E), constructs a lexicographically
ordered multiset 1 of elements from a dataset, E, repre-
sented in r. The lexicographical order is specified by the
ordered set ω ∈ r̂1...|r| and the�i of the members of r cor-
responding with the members of ω. The superscript of the
concatenator r′ ⊆ r, gives the dimensions to be displayed.

For example, given a dataset, E, in an (abstract) rep-
resentation including {pitch, onset, duration} features,
the concatenator C{pitch}

{onset}(E) creates a set of pitches or-
dered by onset time; one might use it to extract the pitches
in a monophonic melody. If we generalise this to arbitrary
features and combinations thereof, and consider only se-
quences including the first note of a piece, we arrive at the
viewpoint representation of Conklin and Witten [3].

Evidently, the projective properties of this operator ac-
count for representational invariances where the invariant
feature is an explicit feature in the representation, or a com-
bination thereof. We use the term capture to denote this
capacity: so projection to subsets of the existing feature
set captures this kind of invariance.

For notational convenience we write operations applied
to each member of an ordered set in order as operations on
the set itself, where this is unambiguous, so, where A is a
set of values and e is a value, A · e = {a · e | a ∈ A};
similarly, the elements of two sets of the same size, A, B
may be combined pairwise in order under ·: A ·B = {a ·b |
ai ∈ A, bi ∈ B}. Finally, to combine a value, v ∈ Σf ,
under an operation, ·, with one feature, f , of an element

1 This is a multiset because it is possible for the concatenator to map
more than one element of E to any given element in the resulting repre-
sentation; it may be necessary to know that this has happened.

e, leaving other features unchanged, we write e ·f v, so
e+pitch k adds k to the pitch feature of e.

In order neatly to specify a particular kind of derived
invariance, we use 〈S〉·f , where S is an ordered set, to de-
note the ordered set produced by ordered, pairwise oper-
ation on the feature f of elements si ∈ S under ·. So,
〈S〉−f = {si+1 −f si | 1 ≤ i < |S|}. This oper-
ation has consequences for the representation of the re-
sult: each feature type must be replaced by a derived type
(corresponding with predefined ones where appropriate).
For our concerns here, pitch is replaced by interval, and
onset is replaced by ioi (inter-onset-interval), in the obvi-
ous way. We will need also a second-order derived invari-
ance to be used with onsets (arriving at ioi proportions),
thus: 〈〈S〉−onset〉÷ioi = { 〈si+i〉−onset

〈si〉−onset

| 1 ≤ i < |S| − 1}.

2.3 Representational invariance

Some invariances can be captured by a change of repre-
sentation. Whether or not this is possible depends on the
representation used and on the nature of the phenomenon
modelled. In many cases, a change of representation like
this can usefully be thought of as indexing, and so it is
helpful to know what remains invariant.

For example, because pitch can be modelled by an
Abelian group, it follows that for any set of pitches,E, thus
modelled, there is another set formed by combining a con-
stant member of Σpitch under the plus function in Φpitch

with each member of E (the members of Σpitch are by
definition in one-to-one correspondence with a partition of
Σinterval). It is implicit in the specification of the abstract
representation that this operation, which is mathematically
translation, models musical pitch transposition. Revers-
ing this argment, it follows that any sequence of pitches
can be expressed as a sequence of pitch differences, or
intervals. Now, again because of the mathematical prop-
erties of the representation, it happens that each such in-
terval is represented in Σpitch, and the algebra defined by
Φpitch models the additive behaviour of intervals too: they
also form an Abelian group. Thus, it is possible to pro-
duce a transposition-invariant version of any dataset, E, in
any representation which contains pitch and onset infor-
mation, by computing the ordered set whose members are
computed by calculating 〈C{pitch}

{onset,pitch}(E)〉−p . If the mu-
sic modelled by E is monophonic, then this is the familiar
interval sequence representation; however, if the music is
not monophonic, care must be taken, because the relative
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nature of this representation makes its values dependent on
their position in the sequence generated by the concate-
nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the representation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, though useful in itself, this property is neither
necessary nor sufficient for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, used in comput-
ing a chromagram. Here, perception maps exactly on to
the mathematics, and so perceptual octave equivalence can
be modelled by a chromatic equality function, defined as
equality modulo n, where n is the number of divisions of
the octave being used in the underlying scale of the pitch
system. Here, Σchroma can very usefully be a contiguous
subset of Σpitch, so Z12 does very nicely, and Φchroma and
Πchroma are equally easily defined. However, this repre-
sentation change is also not, in general, structurally conser-
vative, and it is mathematically evident why: the mapping
from Z to Z12 is many-to-one, and so information is lost.
The same principle, with a mapping to Z8, gives scale-
degree representation, which is also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [8, §2.3]; Parsons coding [9] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger. We will de-
fine two such invariances. In these, contour is preserved,
but interval size is not—formal specifications are given in
Definitions 4 and 5. Transposition from major to paral-
lel minor is a (rather cautious) example of pitch warping;
so, more generally, are interval augmentation and diminu-
tion in contrapuntal theory, or expansion and contraction
in the music of Bartók. We note that among the passages
captured by pitch warping lie also the equivalent transposi-
tions, and this confirms that the stronger pitch-warp invari-
ance is a indeed generalisation of transposition invariance.
Therefore, a content-based music retrieval technique using
Parsons coding can be seen as a filtering technique for find-
ing transposed occurrences of a query (only filtering and

not identifying, because false positives will be generated).
Our remaining common musical features, onset time

and note duration, and the corresponding invariances (see
Table 1) can be dealt with in the obvious way using the
concatenator. For instance, given two datasets, B and B′
in the same representation 2 , two ioi sequences produced
by the appropriate concatenator are time-scaled versions of
each other if there is a number 3 d such that

C
{ioi}
{onset}(B) = C

{ioi}
{onset}(B′)×ioi d.

A similar observation to that above, that time-warp invari-
ance is stronger than time-scale invariance, applies here.

2.4 Algorithmic invariance

Music comparison is usually carried out in practice by an
algorithm using a distance measure. Like representations,
measures can be invariant under some property. At this
level, we speak about algorithmic invariances. The fol-
lowing partial definition is a necessary but not sufficient
condition to that end; it will be completed below.

Definition 1 LetM be a CBMR method and P a property
of a finite space 4 , where |P | is the size of the space under
consideration. M is algorithmically P -invariant , if work-
ing on datasets in representations in which the underlying
datatype(s), explicit or implicit, of P does not introduce a
factor into the computational complexity ofM that is de-
pendent from |P |.

This definition rules out invariances achieved by dis-
cretizing a search space, enumerating it, and then search-
ing exhaustively. Although such methods are sometimes
called P -invariant in the MIR literature, this is really not
the case; they are methods that merely appear to take ad-
vantange of invariance via brute-force calculation.

2.4.1 Pitch invariances

We now define the invariances in our taxonomy (Table 1),
starting with pitch. Recall that our sets are by default
ordered multisets. We omit duration, which is derivable
from ioi, and abbreviate {pitch, interval, onset, ioi} to
{p, i, o, ioi}, respectively.

Definition 2 Let r be a representation including pitch and
onset. A distance function D is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D(C r̂
{o}(A), C r̂

{o}(B)) =
D(C r̂

{o}(A) +p a,C
r̂
{o}(B) +p b).

It may be helpful to visualise Definition 2, as in Fig. 1. In
this example, r̂ = {p, o}.

Note that Definition 2 captures the exact transposition
invariance that a music theorist would expect of that prop-
erty. At times, however, it is useful to have a more relaxed

2 This restriction is not mathematically necessary, but to admit compar-
ison between representations here would over-complicate the example.

3 What kind of number depends on the kind of time representation: a
metrical one would use Z or Q; a real-time one might use R.

4 It may have been derived by quantizing a continuous space P ′.
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nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences C

{duration}
{onset} (B) = {b1, . . . , bn}

and C
{duration}
{onset} (B′) = {b′1, . . . , b′n} are time-scaled ver-

sions of each other if there is a number 3 d such that b1 =
d.b′1, . . . , bn = d.b′n. A similar observation to that above,
that time-warp and concatenation invariances are stronger
than the corresponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C
{p}
{o} (A), C{p}

{o} (B)) =

D1(C
{p}
{o} (A) +p a, C

{p}
{o} (B) +p b).

Still using the concatenator Cp
o , we now define the stronger

invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

for any interval sequences A,B in Σ
∗
p and any positive

valued c1, . . . , cm−1, d1, . . . , dm−1 in Σp.

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

sequence

pi
tc
h

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences Cduration

{onset} (B) = {b1, . . . , bn} and
Cduration
{onset} (B′) = {b′1, . . . , b′n} are time-scaled versions of

each other if there is a number 3 d such that b1 = d.b′1, . . . , bn =
d.b′n. A similar observation to that above, that time-warp
and concatenation invariances are stronger than the corre-
sponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C r̂
{o}(A), C r̂

{o}(B)) =
D1(C r̂

{o}(A) +p a, C r̂
{o}(B) +p b).

It may be helpful to visualise Definition 1, as in Fig. 1. In
this example, r = {p, o}.

Still using the concatenator Cp
o , we now define the

stronger invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

nator; therefore, one cannot apply many of the operations
one would like. This fact is well-known to representers
of music: an interval-based representation is not readily
amenable to the represenation of non-monophonic music.
However, in this change of representation, relatively little
information is lost: just one constant value, which tells us
on what pitch the original dataset started; given that infor-
mation, the entire original E may be reconstructed. In this
sense, we say that the change is structurally conservative.
However, this property is neither necessary nor sufficient
for a transformation to be useful.

For example, a familiar invariance transformation is that
based on perceptual octave-equivalence, as is used, for ex-
ample, in computing a chromagram. Here, perception maps
exactly on to the mathematics, and so perceptual octave
equivalence can be modelled by a chromatic equality func-
tion, defined as equality modulo n, where n is the num-
ber of divisions of the octave being used in the underlying
scale of the pitch system. Here, Σchroma can very use-
fully be a contiguous subset of Σpitch, so Z12 does very
nicely, and Φchroma and Πchroma are equally easily de-
fined. However, this representation change is also not, in
general, structurally conservative, and it is now clear why,
mathematically: the mapping from Z to Z12 is many-to-
one, and so information is lost. The same principle, with a
mapping to Z8, gives scale-degree representation, which is
also octave-invariant.

A more interesting example is contour, an important as-
pect of melodic memory [7, §2.3]; Parsons coding [8] is a
common way to represent the contour of music. However,
ΣParsons = {−, 0,+}; it is not possible to give a fully de-
fined plus function over this set, while maintaining it as a
model of musical contour, for obvious reasons. Therefore,
we confirm that information is lost in changing to a repre-
sentation whose pitch is based on Parsons coding, and one
can argue this in advance because the abstract type of the
Parsons code is not as expressive as a linear Abelian group.
Thus, change of representation to Parsons code from, say,
MIDI, is not structurally conservative. The same applies
to comparable but more detailed interval-based representa-
tions such as the qpi alphabet [4].

Parsons coding captures an invariance which is stronger
than transposition invariance in the sense that the equiva-
lence classes it creates are fewer and larger: we call this
pitch warping. In pitch warping, contour is preserved, but
interval size is not—a formal definition is given in §2.4.
Transposition from major to parallel minor is a (rather cau-
tious) example of pitch warping; so, more generally, are
interval augmentation and diminution in contrapuntal the-
ory. We note that among the passages captured by pitch
warping lie also the equivalent transpositions, and this con-
firms that the stronger pitch warping invariance is a gener-
alisation of transposition invariance. Therefore, a content-
based music retrieval technique using Parsons coding can
be seen as a filtering technique for finding transposed oc-
currences of a query (only filtering and not identifying, be-
cause false positives will be generated).

The remaining of our common musical features, onset

time and note duration, and the corresponding time-scale
and time-warp invariances (see Table 1) can be dealt with
in the obvious way using the concatenator. For instance,
given two datasets, B and B′ in the same representation 2 ,
two duration sequences Cduration

{onset} (B) = {b1, . . . , bn} and
Cduration
{onset} (B′) = {b′1, . . . , b′n} are time-scaled versions of

each other if there is a number 3 d such that b1 = d.b′1, . . . , bn =
d.b′n. A similar observation to that above, that time-warp
and concatenation invariances are stronger than the corre-
sponding time-scale invariances, applies here.

2.4 Methodological invariance

The actual music comparison or retrieval is carried out
by an algorithm based on a distance measure. The mea-
sures themselves can be invariant under some notion. At
this level we speak about methodological invariances.
From here on, we abbreviate {pitch, onset, duration} to
{p, o, d}, respectively.

To be methodologically invariant under a property P
(or methodologically P -invariant), a method M should be
able to work on datasets in representations in which P is
explicit or implicit, without enumerating all the possible
values of P—which, of course, is impossible if the under-
lying datatype(s) is (are) continuous. In this case, dealing
with the invariance must introduce at most a finite constant
factor into the computational complexity of M. This defi-
nition deliberately rules out invariances which are achieved
by discretizing the search space, enumerating the resulting
set and then searching exhaustively. Although such meth-
ods are sometimes called P -invariant in the MIR literature,
this is really not the case; they are merely methods that ap-
pear to take advantange of invariance via brute-force cal-
culation.

We now define all the invariances that are given in our
taxonomy, in Table 1. Recall that these are ordered sets.
We begin with pitch invariances.

Definition 1 Let r be a representation including pitch and
onset. A distance function D1 is transposition-invariant iff

∀a, b ∈ Σp.∀A,B in r.D1(C r̂
{o}(A), C r̂

{o}(B)) =
D1(C r̂

{o}(A) +p a, C r̂
{o}(B) +p b).

It may be helpful to visualise Definition 1, as in Fig. 1. In
this example, r = {p, o}.

Still using the concatenator Cp
o , we now define the

stronger invariance along the pitch dimension:

Definition 2 A distance function D2 is pitch-warp-invari-
ant iff

D2(A,B) = D2(c1(a2 − a1), . . . , cm−1(am − am−1),
d1(b2 − b1), . . . , dm−1(bm − bm−1)),

2 This restriction is not mathematically necessary, but to admit com-
parison between representations here would cloud the example with un-
necessary complication.

3 What kind of number depends on the kind of time representation:
a metrical representation would use Z or Q; a real-time representation
might use R.

Figure 1. Visualisation of Definition 2. r̂ = {p, o}.

version of transposition invariance. Indeed, the following
pitch-transposition invariance, which omits the exact on-
set times, is often used in music retrieval applications.

Definition 3 Let r be a representation including pitch
and onset. A distance function D is pitch-transposition-
invariant iff

∀a, b ∈ Σp.∀A,B in r.D(C r̂\{o}
{o} (A), C r̂\{o}

{o} (B)) =

D(C r̂\{o}
{o} (A) +p a,C

r̂\{o}
{o} (B) +p b).

Stronger kinds of pitch invariance than the above (as
defined in Section 2.3) are defined as follows.

Definition 4 Let r be a representation including pitch and
onset. A distance function D is pitch-warp-invariant iff

∀KA ∈ N |A|−1.∀KB ∈ N |B|−1.∀A,B in r.
D

(
〈C r̂
{o}(A)〉−p , 〈C r̂

{o}(B)〉−p
)

=

D
(
〈C r̂
{o}(A)〉−p ×i KA, 〈C r̂

{o}(B)〉−p ×i KB
)

where N is one of Z+,Q+,R+.

Note that the multiplication operation here needs to be
duly definable in terms of functions in Φi. If we omit the
onset information of that above, we get Parsons invariance:

Definition 5 Let r be a representation including pitch and
onset. A distance function D is Parsons-invariant iff

∀KA ∈ N |A|−1.∀KB ∈ N |B|−1.∀A,B in r.
D

(
〈C r̂\{o}
{o} (A)〉−p , 〈C r̂\{o}

{o} (B)〉−p
)

=

D
(
〈C r̂\{o}
{o} (A)〉−p ×i KA, 〈C r̂\{o}

{o} (B)〉−p ×i KB
)

where N is one of Z+,Q+,R+.

2.4.2 Temporal invariances.

We now move to temporal invariances. The first allows
for linear time shifts. So, for instance, in musical pattern
matching, the pattern may occur anywhere in the database,
not just as an incipit. Being additive, it is usually easily
combined with the first pitch invariances, above.

Definition 6 Let r be a representation including pitch and
onset. A distance function D is time-position-invariant iff

∀a, b ∈ Σo.∀A,B in r.D(C r̂
{o}(A), C r̂

{o}(B)) =
D(C r̂

{o}(A) +o a,C
r̂
{o}(B) +o b).

Note that the above invariance is not meaningful with
durations. The next two temporal invariances are of
multiplicative nature, the first of which, the time-scale-
invariance, is applicable both with onsets and durations.

Definition 7 Let r be a representation including pitch and
onset. A distance function D is time-scale-invariant iff

∀FA ∈ N |A|, FB ∈ N |B|,KA ∈ Σ|A|o ,KB ∈ Σ|B|o .
∀A,B in r.D(C r̂

{o}(A), C r̂
{o}(B)) =

D(C r̂
{o}(A)×o FA +o KA, C r̂

{o}(B)×o FB +o KB).

where N is one of Z+,Q+,R+.

The next duration-warp invariance is most useful with
duration sequences; it is “durational Parsons invariance”,
i.e., the one for which “shorter, longer, same” encoding is
often used. To this end we use the second order derivation
of setsA and B with ioi proportions, abbreviated ip below.

Definition 8 Let r be a representation including pitch and
onset. A distance functionD is duration-warp-invariant iff

∀KA ∈ N |A|−2,KB ∈ N |B|−2.∀A,B in r.
D

(
〈〈C r̂
{o}(A)〉−o 〉÷ioi, 〈〈C r̂

{o}(B)〉−o 〉÷ioi

)
=

D
(
〈〈C r̂
{o}(A)〉−o 〉÷ioi ∧ip KA, 〈〈C r̂

{o}(B)〉−o 〉÷ioi ∧ip KB
)

where ∧ is the power operator and N is one of
Z+,Q+,R+.

The last temporal invariance does not bother with the
onset information, except in as far as order is preserved.
This is the case, for instance, with CBMR methods based
on string representations that omit explicit onset times.
Note that, although it is temporal, there is no intuitive in-
terpretation of this invariance to duration information.

Definition 9 Let r be a representation including pitch and
onset, and let KA ∈ N |A|,KB ∈ N |B| be such that

ai−1 +o KA(i− 1) < ai +o KA(i) and
bi−1 +o KB(i− 1) < bi +o KB(i)

for 2 ≤ i ≤ |KA|, |KB|. A distance function D is time-
warp-invariant iff

∀A,B in r. D
(
C

r̂\{o}
{o} (A), C r̂\{o}

{o} (B)
)

=

D
(
C

r̂\{o}
{o} (A) +o KA, C

r̂\{o}
{o} (B) +o KB

)
where N is one of Z,Q,R.

Now, we can fully define algorithmic invariance.

Definition 10 A methodM is algorithmically P -invariant
iffM satisfies Definition 1 and its similarity measure sat-
isfies the definitions above corresponding with property P .
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3. STRUCTURAL INVARIANCES

Let us now consider a set of stronger invariances that relate
primarily not to the music represented, but to the results
proven using our order-based formalism. To be maximally
useful, it is helpful to know how strongly the results apply:
in particular, does the order imposed by our concatenator
make a difference to the outcome? For example, in the fol-
lowing permutation invariances, when applied to contour-
based melody comparison, onset-order matters, but in a
pitch-class-distribution comparison, it probably does not.

Definition 11 Let r be a representation and ω ⊆ r̂. A
distance function D is ω-permutation-invariant iff

∀A,B in r.D(C r̂
ω(A), C r̂

ω(B)) =
D(P(C r̂

ω(A)),P(C r̂
ω(B)))

where P is any size-preserving permutation operator on ω.
If ω = r̂, the distance function is strongly permutation-in-
variant.

Further, it may be useful to know that a distance is pre-
served no matter which dimension is used for ordering.

Definition 12 Let r be a representation. A distance func-
tion D is ω- concatenation-invariant iff

∀ω1, ω2 ⊂ r̂.∀A,B in r.D(C r̂
ω1

(A), C r̂
ω1

(B)) =
D(C r̂

ω2
(A), C r̂

ω2
(B)).

If ω1, ω2 = r̂, the distance function is strongly concatena-
tion-invariant.

For a strongly concatenation-invariant distance function
the ordering does not make any difference at all. Note that
a strongly permutation invariant distance function is also a
strongly concatenation invariant, and vice versa.

4. INVARIANCES IN POLYPHONIC
CONTENT-BASED MUSIC RETRIEVAL

4.1 Representations of non-monophonic music

The concatenated representations used here are evidently
directly applicable when dealing with monophonic music.
In the case of (discretely represented) polyphonic music,
a geometrical representation [1, 11, 12, 14] is a more ef-
fective and natural choice [5]. An example of geometrical
music matching (under transpositional equivalence, in this
example) is given in Figure 2, where the common pitch-
against time-representation, giving the onset times but not
durations, is used. Several possible ways to represent du-
rations have been suggested [10, 11, 12].

As Figure 2 suggests, the maximal subset match of the
given query pattern of length m within the database of
length n can be found by observing the translation vec-
tors. Note that a translation corresponds to two musically
distinct phenomena: a vertical move corresponds to pitch-
shift while a horizontal move corresponds to aligning the
pattern time-wise; the combination of these is what a mu-
sician calls “a transposition” (to be distinguished from the
process of transposition, performed during performance).

2 3 4

pitch

time
PT

Figure 2. Pointset P , to the right, represents a pointset
(musical) pattern to be matched against a pointset database
to the left. The arrows represent translation vectors, from
pattern to database, that give maximal occurrence.

Thus, working on the translation vectors captures transpo-
sition and position invariances, in the terms defined here.

Ukkonen et al. [12] gave an algorithm to solve the max-
imal subset matching problem in O(mn logm) time. It
is still the fastest known deterministic algorithm for the
problem. Clifford et al. [2] showed that quadratic running
times are probably the best one can achieve for this prob-
lem by proving that the maximal subset matching problem
is 3SUM-hard. They also gave a randomized algorithm for
the problem that works in time O(n log n).

4.2 Combining invariances

When using the sequence (string) representation, pitch-
transposition invariance is easily combined with time-warp
invariance (and the latter serves as a filtering method for
time-scale invariance). However, the explicit encoding of
the onset times in the geometrical representation makes
it difficult to combine transposition invariance with most
of the temporal invariances, such as time-scale invariance.
The difficulty of combining transposition invariance and
time-scale invariance is due to the fact that the former is an
additive property, while the latter is multiplicative.

Romming and Selfridge-Field [10] gave the only known
non-brute-force algorithm capable of dealing with poly-
phonic music, transposition invariance and time-scale in-
variance. Their algorithm is based on geometrical hashing
and works in O(n3) space and O(n2m3) time. By apply-
ing a window on the database such that w is the maximum
number of events that occur in any window, the above com-
plexities can be restated as O(w2n) and O(wnm3), re-
spectively. The algorithm works on all three of the mu-
sical features discussed here (pitch, onset time and dura-
tion), finding a maximal subset match in such a scenario.
However, as with the SIA algorithm family [7], its appli-
cability to real world problems is reduced due to the fact
that matches are mathematically exact, and so performance
expression and error is difficult to account for.
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5. CONCLUSIONS

In this paper we have discussed invariances related to
content-based music retrieval; they are central concepts
in defining and developing effective representations, sim-
ilarity measures and algorithms to that end. Because of
their centrality to the matter, invariances are widely used
in the literature—but very seldom are they properly defined
or their relationship discussed which has occasionally re-
sulted in misuse of the term and confusion.

We have given a sparse taxonomy of the invariances
along three featural dimensions of music—pitch, onset
time and duration. We also defined stronger invariances,
intrinsic to our formalism. The taxonomy shows explicitly
the relationships of these invariances to each other. More-
over, we have precisely defined them, minimizing confu-
sion in future discussion. The taxonomy works also as a
useful tool in discussing what has been done, and in iden-
tifying where there is still much space for future develop-
ments towards efficient and effective CBMR tools.

It seems that the geometrical framework provides the
best (and most natural) representation when dealing with
polyphonic music. Using this framework, however, it is
not easy to combine translation and time-scale invariances
in a computationally efficient way; there is still a huge
gap to be bridged in this respect to be able to meet the
real world requirements for responsive and error-tolerant
database queries. One way to improve error-tolerance—as
is evident in our taxonomy—would be to adapt the geo-
metrical frameworks to work also on the level of the more
general invariances. To date, there is next to no work in
this direction, though Lubiw and Tanur [6] presented an
algorithm that measures the distance between the desired
pitches and observed pitches that are combined in a final
similarity value. So, with respect to our taxonomy, their
work resides somewhere in between the two ends. Their
method, although built on discrete space, does not straight-
forwardly lend itself to a non-strict time-scale invariance.

We are currently studying how to adapt the geometri-
cal approach to the more general classes of our taxonomy
thus achieving more error-tolerant geometrical methods for
content-based music retrieval. Another direction is to re-
fine the definitions in order to be able to discriminate meth-
ods that allow“gaps” (as the geometrical methods usually
do) from those that do not (for instance, methods based on
exact string matching).
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